OpenAl's Codex

Data Circles Journal Club 9-14-22

Evaluating Large Language Models Trained on Code

Mark Chen^{*1} Jerry Tworek^{*1} Heewoo Jun^{*1} Qiming Yuan^{*1} Henrique Ponde de Oliveira Pinto^{*1}
Jared Kaplan^{*2} Harri Edwards¹ Yuri Burda¹ Nicholas Joseph² Greg Brockman¹ Alex Ray¹ Raul Puri¹
Gretchen Krueger¹ Michael Petrov¹ Heidy Khlaaf³ Girish Sastry¹ Pamela Mishkin¹ Brooke Chan¹
Scott Gray¹ Nick Ryder¹ Mikhail Pavlov¹ Alethea Power¹ Lukasz Kaiser¹ Mohammad Bavarian¹
Clemens Winter¹ Philippe Tillet¹ Felipe Petroski Such¹ Dave Cummings¹ Matthias Plappert¹
Fotios Chantzis¹ Elizabeth Barnes¹ Ariel Herbert-Voss¹ William Hebgen Guss¹ Alex Nichol¹ Alex Paino¹
Nikolas Tezak¹ Jie Tang¹ Igor Babuschkin¹ Suchir Balaji¹ Shantanu Jain¹ William Saunders¹
Christopher Hesse¹ Andrew N. Carr¹ Jan Leike¹ Josh Achiam¹ Vedant Misra¹ Evan Morikawa¹
Alec Radford¹ Matthew Knight¹ Miles Brundage¹ Mira Murati¹ Katie Mayer¹ Peter Welinder¹
Bob McGrew¹ Dario Amodei² Sam McCandlish² Ilya Sutskever¹ Wojciech Zaremba¹

OpenAI introduces **Codex**, a **GPT** language model fine-tuned on publicly available code from GitHub, and study its **Python code-writing** capabilities. A distinct production version of Codex powers **GitHub Copilot**. On **HumanEval**, a new evaluation set we release to measure **functional correctness** for synthesizing programs from docstrings, our **model solves 28.8%** of the problems, while GPT-3 solves 0% and GPT-J solves 11.4%.

Intro & Related Work

Translate between NL (natural language) and PL (programming language) code

Tasks

- Explain code, generate documentation or function names (PL \rightarrow NL)
- Code generation or search (NL \rightarrow PL)

Examples

- CodeNN, CodeSum, code2seq C#, SQL, Java
- CodeBERT code search in 6 PL
- PyMT5 Python

Evaluation Framework

HumanEval

- Handwritten evaluation set
- 164 programming problems with signature, docstring, body, unit tests
- Assess language comprehension, algorithms, simple math

HumanEval

```
def incr_list(l: list):
    """Return list with elements incremented by 1.
    >>> incr_list([1, 2, 3])
    [2, 3, 4]
    >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
    [6, 4, 6, 3, 4, 4, 10, 1, 124]
    """
```

return [i + 1 for i in 1]

```
def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.
    Examples
    solution([5, 8, 7, 1]) =⇒12
    solution([3, 3, 3, 3]) =⇒9
    solution([30, 13, 24, 321]) =⇒0
    """
    return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
```

HumanEval

```
def encode_cyclic(s: str):
    11 11 11
    returns encoded string by cycling groups of three characters.
    11 11 11
    # split string to groups. Each of length 3.
    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
    # cycle elements in each group. Unless group has fewer elements than 3.
    groups = [(group[1:] + group[0])  if len(group) == 3 else group for group in groups]
    return "".join(groups)
def decode_cyclic(s: str):
    0.0.0
    takes as input string encoded with encode_cyclic function. Returns decoded string.
    0.0.0
    # split string to groups. Each of length 3.
    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
    # cycle elements in each group.
    groups = [(group[-1] + group[:-1]) if len(group) == 3 else group for group in groups]
    return "".join(groups)
```

Evaluation Framework

Functional Correctness

- pass@k metric
- Generate at least
 1 correct code passes unit test

BLEU score unreliable indicator of Functional Correctness

Code Fine-Tuning

Pre-trained GPT-3 12B params

Data Collection

- 54 million public GitHub repos
- 159 GB Python files filtered

Faster Convergence

Different Tokenizer

Figure 1: The Transformer - model architecture.

Samples & Temperature Parameters

k=1 T=0.2

k=100 T=0.8

Ranking Heuristics

Find best from k samples without oracle?

Comparative Analysis on HumanEval

		PASS@ k		
Open Source trained on The Pile	-	k = 1	k = 10	k = 100
 GPT-Neo 2.7B Codex-85M GPT-J 6B 	GPT-NEO 125M GPT-NEO 1.3B GPT-NEO 2.7B GPT-J 6B	0.75% 4.79% 6.41% 11.62%	1.88% 7.47% 11.27% 15.74%	2.97% 16.30% 21.37% 27.74%
Codex-300M	TABNINE	2.58%	4.35%	7.59%
TabNine	CODEX-12M CODEX-25M CODEX-42M CODEX-85M CODEX-300M CODEX-679M CODEX-2.5B	2.00% 3.21% 5.06% 8.22% 13.17% 16.22% 21.36%	3.62% 7.1% 8.8% 12.81% 20.37% 25.7% 35.42%	8.58% 12.89% 15.55% 22.4% 36.27% 40.95% 59.5%
	CODEX-12B	28.81%	46.81%	72.31%

Evaluation on APPS Dataset

5000 train + 5000 test code challenge with 3 difficulty levels

	INTRODUCTORY	INTERVIEW	COMPETITION
GPT-NEO 2.7B RAW PASS@1 GPT-NEO 2.7B RAW PASS@5	3.90% 5.50%	$0.57\% \\ 0.80\%$	$0.00\% \\ 0.00\%$
1-SHOT CODEX RAW PASS@1	4.14% (4.33%)	0.14% (0.30%)	0.02% (0.03%)
1-SHOT CODEX RAW PASS@5	9.65% (10.05%)	0.51% (1.02%)	0.09% (0.16%)
1-SHOT CODEX RAW PASS@100	20.20% (21.57%)	2.04% (3.99%)	1.05% (1.73%)
1-SHOT CODEX RAW PASS@1000	25.02% (27.77%)	3.70% (7.94%)	3.23% (5.85%)
1-SHOT CODEX FILTERED PASS@1	22.78% (25.10%)	2.64% (5.78%)	3.04% (5.25%)
1-SHOT CODEX FILTERED PASS@5	24.52% (27.15%)	3.23% (7.13%)	3.08% (5.53%)

Supervised Fine-Tuning

Codex-**S**

- Competitive Programming +10K problems
- Continuous Integration +40K tracing tests
- Filtered Out
 Non-deterministic,
 Ambiguous, Difficult

Docstring generation

Codex-**D**

- Describe intent
- Concat signature, solution, docstring

Grade by hand, time-consuming

- 1,640 problems
- 10 samples each problem

Limitations, Impacts, Hazards

Over-reliance

Misalignment

Bias & Representation

Economic & Labor Markets

Security

Environmental

Legal

Risk Mitigation

Sandbox & Playground Demo

The Codex model series is a descendant of our GPT-3 series that's been trained on both natural language and billions of lines of code. It's most capable in Python and proficient in over a dozen languages including JavaScript, Go, Perl, PHP, Ruby, Swift, TypeScript, SQL, and even Shell.

Sandbox & Playground Demo

You can use Codex for a variety of tasks including:

- Turn comments into code
- Complete your next line or function in context
- Bring knowledge to you,

Finding a useful library or API call for an application

- Add comments
- Rewrite code for efficiency

Conclusion & Discussion

Experience with code generation?

Ideas of usage and applications?

Thoughts or concerns?